(x^2-8x+16)/(x^2)=30

Simple and best practice solution for (x^2-8x+16)/(x^2)=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-8x+16)/(x^2)=30 equation:



(x^2-8x+16)/(x^2)=30
We move all terms to the left:
(x^2-8x+16)/(x^2)-(30)=0
Domain of the equation: x^2!=0
x^2!=0/
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
(x^2-8x+16)-30*x^2=0
We add all the numbers together, and all the variables
-30x^2+(x^2-8x+16)=0
We get rid of parentheses
-30x^2+x^2-8x+16=0
We add all the numbers together, and all the variables
-29x^2-8x+16=0
a = -29; b = -8; c = +16;
Δ = b2-4ac
Δ = -82-4·(-29)·16
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{30}}{2*-29}=\frac{8-8\sqrt{30}}{-58} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{30}}{2*-29}=\frac{8+8\sqrt{30}}{-58} $

See similar equations:

| 13^-x=6 | | x^2+x-6=2x+12 | | 5m+8=4-3m | | X(3x)=80 | | (k-5)/2=11 | | 22=-8x+2-2x | | 3(2d+4)=18 | | (x+50)+(60+2x)+(5x-10)=180x= | | 11g−7g−–2g=–6 | | 3+1/4a=12+a | | -59=-x/2 | | 5a=a+52 | | p+60=3p | | 10^-x=5^4x | | 1/4+1/5=x-3/20 | | ((83.2-x)/83.2)(100)/(0-10)=-0.6 | | ((83.2-x)/83.2)(100/(0-10)=-0.6 | | ((83.2-x)/83.2x100)/(0-10)=-0.6 | | ((83.2-x)x100)/(0-10)=-0.6 | | 2(x+2)–x=x+2 | | 7x2+10=185 | | 6x+1–6=-5x+6 | | 5+10x=65 | | 4*10^x=88 | | 2x+15=110 | | 50+3x=80 | | 2x2+5=55 | | 4x2+39x–10=0 | | 3⋅2x⋅24=768 | | x2-9=20 | | 56+n=432 | | -4(q+15)=0 |

Equations solver categories